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Abstract. In this work we calculate two two-loop massless Feynman integrals pertaining to self-energy
diagrams using NDIM (Negative Dimensional Integration Method). We show that the answer we get is
36-fold degenerate. We then consider special cases of exponents for propagators and the outcoming results
compared with known ones obtained via traditional methods.

1 Introduction

The dimensionality of space-time plays a key role in all
branches of Physics. The quantities we calculate, as the-
oreticians, depend very much on the number of dimen-
sions we are considering. Theories in higher and lower
dimensions than four have been put forth by many re-
searchers and plentiful of good insights have been gained
through this exercise. Zooming in the arena of quantum
field theory, we discover that the dimensionality of space-
time gained a more sophisticated status, being promoted
from a mere integer number to that of a complex variable,
with the advent and development of dimensional regular-
ization by ’t Hooft et al. and several other pioneers in the
field [1].

In other words, we could say that quantum field theory
(QFT), besides other great ideas it inspired, physical and
mathematical alike, did reveal this amazing possibility:
the analytic continuation of the space-time dimension D.

The union between the theory of analytic functions
and QFT is very profitable. Dimensional regularization
(DREG), the technique that bears the concept of analyt-
ically continued D, is one of its profits. As a step further
in this direction Halliday et al. [2,3] developed the idea
of analytically continued D to negative values. Of course,
the seminal idea of negative values for D is already con-
tained in the work of ’t Hooft and others. But what is
novel in Halliday’s insight is the amazing possibility of let-
ting field propagators be raised to positive powers, so that
the integrand becomes polynomial. The thrust behind the
idea is that solving a polynomial integral should be – in
principle at least – easier to perform than rational ones
elicited in the usual Feynman integrals. This very simple
argument, which we call negative dimensional integration
method (NDIM), can simplify the calculation of Feynman
integrals in an astounding way [4–10].

In the usual DREG [11–13] the only quantities that
preserve their meaning are the Green’s functions [14]. We
will not try to discuss whether they still have (or have
not) their meaning preserved within the context of NDIM

nor speculate what are the features, if any, of this “new
world” of negative dimensions [8]. What we do is simply
to allow for it just for calculational purposes. The reader
must have this important point in mind.

In our previous works [7,8] we calculated massive one-
loop four point functions (former reference) and a mass-
less two-loop three-point vertex (latter reference) with the
NDIM approach. In the first, NDIM provided not only the
well-known hypergeometric functions but six other new re-
sults in a very straightforward manner [9]; while for the
two-loop vertex, we considered the particular case where
two of its external momenta were set on-shell, and NDIM
responded with as many as twelve times – surprisingly
enough, all of them yielding the same correct result – that
is, a twelvefold degeneracy. This led us to conjecture that
when the power series had unit argument and they were all
summable, then the result would be degenerate. That is,
if this conjecture is correct, we need only to carry out one
sum – the most convenient one, of course. The conjecture
remains to be proven or disproved.

Here we put our NDIM to another “lab-test” [8] by
considering two two-loop self-energy diagrams which we
call by the funny name “flying saucer” diagrams – side
view (Fig. 1) and front view (Fig. 2), just to make it easier
for us to refer to them. The outline for this article is as
follows: In Sect. 2 we solve the two-loop Feynman integral
relative to these two graphs, i.e., the space-time dimension
and the exponents of the pertinent propagators are left
arbitrary. Then, in Sect. 3, we particularize to suit either
the “flying saucer, side view” or the “flying saucer, front
view” diagram cases. And finally, Sect. 4 is devoted to our
concluding remarks.

2 Feynman graphs with four massless
propagators

The NDIM approach to solve Feynman integrals is beau-
tiful in its simplicity: First, we take the propagators of the
integral we want to work out, multiply each one of them
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Fig. 1. Two-loop massless Feynman diagram: the “flying
saucer”, side view
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Fig. 2. Two-loop massless Feynman diagram: the “flying
saucer”, front view

by a specific parameter and then solve the D-dimensional
gaussian integral whose argument is that very expression.
Let us see how it works in practice. Consider the gaussian
integral,

I(p2;D) =
∫

dDk dDq exp
[−αq2 − βk2 − γ(p − k)2

−ω(k − q)2
]
, (1)

which clearly is relevant to the diagrams we want to work
out. It is not difficult to integrate it; the result is,

I(p2;D) =
(

π2

λ

)D/2

exp
[
−γp2

λ
(βω + αβ + αω)

]
, (2)

where λ = αβ+βω+αγ+γω+αω. Expanding (2) in Taylor
series and also expanding the multinomial expression in λ,
we get an eightfold summation,

I(p2;D) =
∞∑

ni=0

(−p2)n1+n2+n3(−n1 − n2 − n3 − 1
2D)!

n1!n2!n3!n4!n5!n6!n7!n8!

×αn1+n2+n4+n6+n8βn1+n3+n4+n5

×γn1+n2+n3+n6+n7ωn2+n3+n5+n7+n8 , (3)

with the constraint −n1 − n2 − n3 − 1
2D = n4 + n5 + n6 +

n7 + n8 coming from the multinomial expansion.
The second step is simpler and faster: expand the ex-

ponential (1) in Taylor series first to get,

I(p2;D) =
∞∑

i,j,l,m=0

(−1)i+j+l+m αiβjγlωm

i!j!l!m!

×J (i, j, l, m;D), (4)

where we define,

J (i, j, l, m;D) =
∫

dDk dDq (q2)i(k2)j
[
(p − k)2

]l

× [
(k − q)2

]m
, (5)

which is our negative dimensional integral. Observe that
the propagators are raised to positive powers. We will solve
this integral and then carry out the analytic continuation
of the result to allow negative powers of the propagators
and positive D. This is a general feature of NDIM.

Comparing (3) and (4) we get an expression for the
negative-D integral,

J (i, j, l, m;D) =
∞∑

ni=0

(−π)D(p2)σ G

n1!n2!n3!n4!n5!n6!n7!n8!
, (6)

where we define the product of gamma functions,

G = Γ (1 + i)Γ (1 + j)Γ (1 + l)Γ (1 + m)Γ (1 − σ − 1
2
D),

and since the two expressions must equal, sum indices in
the former and exponents of propagators in the latter,
must satisfy the system,



n1 + n2 + n4 + n6 + n8 = i
n1 + n3 + n4 + n5 = j

n1 + n2 + n3 + n6 + n7 = l
n2 + n3 + n5 + n7 + n8 = m

n1 + n2 + n3 = σ

(7)

where σ = i+j+l+m+D and the last equation comes from
the multinomial expansion. Observe that the equations
above are linear, but because we have eight unknowns and
only five equations, in order to solve this system we must
choose three of the unknowns and solve it in terms of
them. There are many ways in which this choice can be
done; in fact, there are C8

3 = 8!/(5!3!) = 56 possibilities
altogether. However, 20 out of the 56 lead us to trivial
solutions, which present no interest at all. The remaining
36 give us the results for the Feynman integral when we
plug their solutions in equation (6).

We will solve the non-trivial systems and write down
the general results, but before doing that, let us see what
we can do to lessen our task. Looking at the Feynman di-
agram we can spot symmetry properties that help us in
this. Thus, we expect the outcoming result to be symmet-
ric under the exchange i ↔ m, which in turn will reduce by
half the number of distinct systems that we need to deal
with, since the symmetry will account for the remaining
half.

Let us then first consider the solution that leaves n5,
n6, n8 as free indices in the summation; let us call it Ja.
It yields,

Ja = (−π)D(p2)σP1

∞∑
n5,n6,n8=0

(−1)n6(−i − m − 1
2D|n8)

n5!n6!n8!

× (−l + σ|n6)(−j − m − 1
2D|n5 − n6)

(1 + l − m|n5 − n6 + n8)

×(
1
2
D + l|n5 + n8), (8)

where

P1 =
Γ (1 + i)Γ (1 + j)Γ (1 + l)Γ (1 + m)
Γ (1 + l − m)Γ (1 + i + m + 1

2D)
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× Γ (1 − σ − 1
2D)

Γ (1 + j + m + 1
2D)Γ (1 + l − σ)Γ (1 − l − 1

2D)
,

with the Pochhammer symbol [15] denoted by,

(a|m) ≡ (a)m =
Γ (a + m)

Γ (a)
.

Using one of the properties of the Pochhammer symbol
[15], i.e.,

(a| − m) =
(−1)m

(1 − a|m)
, (9)

one can identify these series as hypergeometric [16]; in
fact, we can rewrite them in a convenient manner using
another property,

(a|b + c) = (a|b)(a + b|c), (10)

and sum, for example, the n8 series using the well-known
formula [15],

2F1(a, b; c|1) =
Γ (c)Γ (c − a − b)
Γ (c − a)Γ (c − b)

, (11)

yielding,

Ja = (−π)D(p2)σP1P2

∞∑
n5,n6=0

(1 + i| − n6)(−l + σ|n6)
n5!n6!

× ( 1
2D + l|n5)(−j − m − 1

2D|n5 − n6)
(1 − m − 1

2D| − n6)

× 1
(1 + i + l + 1

2D|n5 − n6)
, (12)

where

P2 =
Γ (1 + i)Γ (1 + l − m)

Γ (1 − m − 1
2D)Γ (1 + i + l + 1

2D)
. (13)

In a similar manner we can sum the two remaining
series, getting as a result,

Ja = (−π)D(p2)σ Γ (1 + i)Γ (1 + l)Γ (1 + m)
Γ (1 + σ)Γ (1 − i − 1

2D)Γ (1 − m − 1
2D)

×Γ (1 − σ − 1
2D)Γ (1 + i + j + m + 1

2D)
Γ (1 − l − 1

2D)Γ (1 + i + m + 1
2D)

×Γ (1 − i − m − D)
Γ (1 + l − σ)

. (14)

The last and final step that need to be taken is to bring
this result back to our real physical world with positive
D. Grouping the gamma functions in the numerator with
the ones in the denominator in convenient Pochhammer
symbols and using (9), we arrive at

J AC
a = πD(p2)σ(−i|i + m +

1
2
D)(−m|i + m +

1
2
D)

×(σ +
1
2
D| − 2σ − 1

2
D)(−i − j − m − 1

2
D|j)

×(−l|σ)(i + m + D| − i + l − m − 1
2
D). (15)

This very simple operation allows us to analytically
continue the result back into our real physical world, D >
0. Equation (15) is the general result, and we note that it is
symmetric in i ↔ m as it should be, and it is correct [17].
The reader will ask immediately: What is(are) the result(s)
that the other solution(s) provide? NDIM answers in as
brief and surprising a manner as it could be: the same.
Indeed just to make sure we went through all of them,
and verified that it is possible to sum all the emerging
series and they provide the same result, namely, equation
(14) which leads to the correct expression, equation (15),
i.e., we have a thirty-six-fold degeneracy!

A word of caution here: Not all the sums can be so
easily dealt with. Yet, just to convince the reader that it
is possible to sum them all, we shall carry out one more
summation, the hardest one. The degeneracy above men-
tioned can be classified into two sets: 32 solutions are like
Ja with relatively easy sums to carry out, while 4 of them
are like the following one which we call Jb. Consider then
the solution with indices n1, n4, n5,

Jb = (−π)D(p2)σP3

∞∑
n1,n4,n5=0

( 1
2D + l|n4 + n5)

n1!n4!n5!
(16)

× (−1)n4( 1
2D + m|n1 + n4)(−j|n1 + n4 + n5)

(1 − j + σ|n4 + n5)(1 − i − j − 1
2D|n1 + n4)

,

where

P3 =
Γ (1 + i)Γ (1 + l)Γ (1 + m)Γ (1 − σ − 1

2D)
Γ (1 − j + σ)Γ (1 − m − 1

2D)Γ (1 − i − j − 1
2D)

× 1
Γ (1 − l − 1

2D)
. (17)

Using the same procedure we used for Ja, we can carry
out the n5 summation, yielding,

Jb = (−π)D(p2)σP3P4

∞∑
n1,n4=0

( 1
2D + l|n4)(−σ|n1)

n1!n4!
(18)

× ( 1
2D + m|n1 + n4)(−j|n1 + n4)

( 1
2D + l − σ|n1 + n4)(1 − i − j − 1

2D|n1 + n4)
,

where

P4 =
Γ (1 − j + σ)Γ (1 − l − 1

2D + σ)
Γ (1 + σ)Γ (1 − j − l − 1

2D + σ)
.

However, this time, neither of the remaining sums (in
n1 or n4) can be written in terms of 2F1, but rather in
terms of 3F2 which are not summable for arbitrary values
of its parameters. Here comes the trick that will do the
required job: Put the n4 series in terms of a 3F2 function
and use the property [16]

3F2(a, b, c; e, f |1) = Q 3F2(e − a, f − a, s; s + b, s + c|1),
(19)

where s = e + f − a − b − c and

Q =
Γ (e)Γ (f)Γ (s)

Γ (a)Γ (s + b)Γ (s + c)
.
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A good choice is to take

a = −j + n1
b = 1

2D + l
c = 1

2D + m + n1
e = 1

2D + l − σ + n1
f = 1 − i − j − 1

2D + n1

(20)

so that the gamma functions in Q simplify several factors
in the series and some of them can be grouped by the
property (10) giving,

Jb = (−π)D(p2)σP3P4P5

×
∞∑

n1,n4=0

( 1
2D + j + l − σ|n4)( 1

2D + m|n1)(−σ|n1)
n1!n4!(1 − i − σ − 1

2D|n1 + n4)

× (1 − i − 1
2D|n4)(1 − i − m − σ − D|n4)

(1 − i + l − m − σ − 1
2D|n4)

, (21)

where

P5 =
Γ ( 1

2D + l − σ)Γ (1 − i − j − 1
2D)

Γ (−j)Γ (1 − i − σ − 1
2D)

× Γ (1 − i − m − σ − D)
Γ (1 − i + l − m − σ − 1

2D)
.

Now the sum in n1 is a 2F1 function and we can sum
it using the Gauss summation formula (11). The gamma
functions that arise from this summation simplify the re-
maining series in n4 from a 3F2 into a 2F1 function that
can be summed again using the usual Gauss summation
formula. The end result is,

Jb = (−π)D(p2)σP3P4P5P6P7, (22)

where P6 came from the n1 sum,

P6 =
Γ (1 − i − σ − 1

2D)Γ (1 − i − m − D)
Γ (1 − i − 1

2D)Γ (1 − i − m − σ − D)
,

and P7 came from the last one,

P7 =
Γ (−j)Γ (1 − i + l − m − σ − 1

2D)
Γ ( 1

2D + l − σ)Γ (1 − σ + l)
.

Multiplying all the gamma factors (P3, ..., P7) we get,
exactly, the expression (14), that leads to the correct re-
sult (15). One could rightfully ask: In more complicated
problems, the Feynman integrals may not lead to known
series. How is one to proceed then? We can answer with
an example: the planar three-point two-loop ladder dia-
gram with two external legs on-shell leads to a six indices
series, with unit argument, arbitrary exponents of propa-
gators and D. In fact, we can sum five of them and the last
one is a 3F2 hypergeometric function, which in the special
case where the exponents of propagators are minus one
reduces to a Gaussian one that is summable, of course. So
in the special cases of interest for massless diagrams we
will get always products of gamma functions.

For massive internal particles see [7, 9].

3 Special cases

The scalar integral we calculated in the previous section
has particular cases of interest, namely, the “flying saucer”
diagrams, side view (Fig. 1) and front view (Fig. 2). For the
side view diagram the exponents of the propagators are all
equal to minus one, while for the front view diagram the
exponents are minus one except for j = −2.

Let us denote by J AC the general result for the “flying
saucer” diagram; when we take i = j = l = m = −1 we
have the result for the side view diagram,

J AC
SV = πD(p2)D−4 Γ 3( 1

2D − 1)Γ (D − 3)Γ (2 − 1
2D)

Γ (3 − 1
2D)Γ (D − 2)

× Γ (4 − D)
Γ ( 3

2D − 4)
, (23)

while when we take i = −1, j = −2, l = m = −1 we have
the result for the front view diagram,

J AC
FV = πD(p2)D−5 Γ 3( 1

2D − 1)Γ (5 − D)Γ (D − 4)
Γ (4 − 1

2D)Γ (D − 2)

×Γ (2 − 1
2D)

Γ ( 3
2D − 5)

, (24)

which reproduce well-known results [17,18].

4 Conclusion

The analytic continuation of the space-time dimension D
into negative values allowed us to solve two two-loop Feyn-
man integrals with ease. We interpret this analytic con-
tinuation like in usual DREG but solve the integrals, in
negative dimensions, as they were polynomial. The way
back road, via another analytic continuation is straight-
forward and the whole procedure is quite simple and el-
egant. There are no cumbersome parametric integrals to
solve; on the contrary, the only things one needs to know
are how to solve gaussian integrals, and systems of lin-
ear algebraic equations! Furthermore, we have surprising
manifold degenerate solutions for a single integral. Our
previous conjecture on this topic seems to hold, though
further research is needed to prove it.
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